NMR Water Self-Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions.

نویسندگان

  • Ruiliang Bai
  • Peter J Basser
  • Robert M Briber
  • Ferenc Horkay
چکیده

Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca2+ and Na+. Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na+ on the mobility of water molecules was practically undetectable. By contrast, addition of Ca2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osmotic swelling of polyacrylate hydrogels in physiological salt solutions.

The swelling behavior of fully neutralized sodium polyacrylate gels was investigated in aqueous solutions of alkali metal (LiCl, NaCl, KCl, CsCl) and alkaline earth metal salts (CaCl2, SrCl2, BaCl2). The total salt concentration and the ratio of monovalent to divalent cations were varied in the biologically significant range. It is found that the concentrations of both monovalent and divalent c...

متن کامل

Vapor-Pressure Osmometry and Conductivity Determination of Salting-Out Effects in Aqueous Surface-Active Ionic Liquid 1-Dodecyl-3-methylimidazolium Bromide Solutions

Systematic studies on the vapor-liquid equilibria (VLE) and conductometric properties of aqueous solutions of model surface-active ionic liquid 1-dodecyl-3-methylimidazolium bromide ([C12mim]Br) are performed in the absence and presence of a large series of electrolytes in order to achieve a deeper understanding about the molecular mechanism behind the specific salt effect on the aggregation be...

متن کامل

Effect of monovalent-divalent cation exchange on the swelling of polyacrylate hydrogels in physiological salt solutions.

The volume transition induced by monovalent-divalent cation exchange of fully neutralized polyacrylate hydrogels was investigated in aqueous NaCl solutions. The variation of the osmotic swelling pressure, shear modulus, and mixing pressure was measured when Na(+) ions were substituted by divalent or trivalent cations. Alkali metal salts move freely throughout the entirely network, and alkaline ...

متن کامل

Calcium-Induced Volume Transition in Polyacrylate Hydrogels Swollen in Physiological Salt Solution

Macromol. Biosci. 2002, 2, 207 –213 Full Paper: Calcium ions are introduced to sodium polyacrylate gels swollen in sodium chloride solutions and the volume transition is measured by osmotic and small-angle neutron-scattering. The osmotic pressure is found to depend on the sodium chloride con­ centration, indicating that calcium preferen­ tially replaces condensed sodium ions, a result supported...

متن کامل

Dissecting ion-specific dielectric spectra of sodium-halide solutions into solvation water and ionic contributions.

Using extensive equilibrium molecular dynamics simulations we determine the dielectric spectra of aqueous solutions of NaF, NaCl, NaBr, and NaI. The ion-specific and concentration-dependent shifts of the static dielectric constants and the dielectric relaxation times match experimental results very well, which serves as a validation of the classical and non-polarizable ionic force fields used. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied polymer science

دوره 131 6  شماره 

صفحات  -

تاریخ انتشار 2014